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Information processing during human cognitive and emotional
operations is thought to involve the dynamic interplay of several
large-scale neural networks, including the fronto-parietal central
executive network (CEN), cingulo-opercular salience network (SN),
and the medial prefrontal-medial parietal default mode networks
(DMN). It has been theorized that there is a causal neural
mechanism by which the CEN/SN negatively regulate the DMN.
Support for this idea has come from correlational neuroimaging
studies; however, direct evidence for this neural mechanism is
lacking. Here we undertook a direct test of this mechanism by
combining transcranial magnetic stimulation (TMS) with functional
MRI to causally excite or inhibit TMS-accessible prefrontal nodes
within the CEN or SN and determine consequent effects on the
DMN. Single-pulse excitatory stimulations delivered to only the
CEN node induced negative DMN connectivity with the CEN and
SN, consistent with the CEN/SN’s hypothesized negative regula-
tion of the DMN. Conversely, low-frequency inhibitory repetitive
TMS to the CEN node resulted in a shift of DMN signal from its
normally low-frequency range to a higher frequency, suggesting
disinhibition of DMN activity. Moreover, the CEN node exhibited
this causal regulatory relationship primarily with the medial pre-
frontal portion of the DMN. These findings significantly advance
our understanding of the causal mechanisms by which major brain
networks normally coordinate information processing. Given that
poorly regulated information processing is a hallmark of most
neuropsychiatric disorders, these findings provide a foundation
for ways to study network dysregulation and develop brain stim-
ulation treatments for these disorders.
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Extensive neuroimaging work has described a set of large-
scale, intrinsically organized networks in the human brain, as

well as those of other mammals, which are thought to underlie a
broad range of functions, from basic sensory and motor capaci-
ties to cognition and higher-level functions (1–4). Three net-
works in particular have been the focus of work related to these
higher-level functions (5): the fronto-parietal central executive
network (CEN), the cingulo-opercular salience network (SN),
and the medial prefrontal-medial parietal default mode network
(DMN). These networks are thought to interact and together
control attention, working memory, decision making, and other
higher-level cognitive operations (6–8).
Findings to date, however, emphasize the need for a direct test

of the proposed causal relationship between these networks. On
the basis of observations in resting-state functional MRI (rs-
fMRI) scans in humans of time-locked negative CEN/DMN and
SN/DMN connectivity (9–11), as well as mathematical modeling
of temporal relationships between these networks (12), it has
been argued that the CEN and/or SN negatively regulate activity
in the DMN. However, because a similar pattern of connectivity
can be spuriously introduced during data processing, interpretation
of this negative connectivity as reflecting a genuine mechanistic

relationship has been questioned (11). Thus, unknown is whether
the DMN is indeed under causal control, and if so, which nodes
within the CEN or SN can achieve this control. Answering these
questions would inform the specific mechanisms by which opposing
network dynamics may drive cognition (13) and thus extend beyond
the view offered by current theoretical and clinical models of brain
organization (14). Inferring causality from neuroimaging data,
however, requires that normally correlative neuroimaging methods
be combined with a direct external manipulation of neural activity
in one or more of these networks.
We achieved a direct test of causality by combining two non-

invasive techniques: transcranial magnetic brain stimulation (TMS)
was used to directly excite or inhibit the CEN and SN, whereas
concurrent neuroimaging with fMRI was used to determine the
causal downstream consequences of TMS on the DMN (15).
Concurrent TMS/fMRI builds on conventional neuroimaging
approaches, wherein brain activation correlates are found across
tasks or groups, by allowing direct excitation or inhibition of tar-
geted brain regions and their interconnected distal network part-
ners (15–17). Experimental manipulation of brain activity thereby
provides information about causality not possible with correlative
neuroimaging alone, and it can be achieved with high reliability and
precision, with induced fMRI responses resembling voluntarily
evoked brain activity (18). Application of this technology to a sys-
tems-level understanding of causal interactions among the CEN,
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SN, and DMN, not yet achieved, would not only carry fundamental
implications for theoretical models of brain organization but also
open up unique avenues for guiding neural network-modulating
clinical interventions.
Causal effects were therefore operationalized in two ways with

respect to testing whether and how the CEN and SN regulate the
DMN: (i) that by exciting a putative CEN/SN regulatory node we
induce DMN regulation, and (ii) that by inhibiting a putative CEN/
SN regulatory node we perturb activity patterns in the DMN. Fig. 1
outlines the two sets of experiments that achieved these goals.
In the first set of experiments we used single excitatory TMS

pulses, interleaved between acquisition of fMRI whole-brain
volumes (“concurrent TMS/fMRI scans”), to separately drive
nodes within the CEN or SN. We used psychophysiological in-
teraction analyses (PPIs) as the read-out of the DMN’s re-
lationship with the CEN/SN and examined whether transient
TMS-driven excitation of nodes within the CEN or SN induced
the expected negative network relationship (Fig. 2 A and B). In
the second set of experiments we acquired rs-fMRI scans before
and after a single session of low-frequency (LF, 1 Hz) inhibitory
repetitive TMS (rTMS) to CEN or SN nodes. We used analyses
of resting-state signal amplitude and functional connectivity as
read-outs of the downstream effects of rTMS on the DMN and
examined whether 1-Hz rTMS-mediated inhibition of CEN or
SN nodes resulted in disinhibition of DMN activity (Fig. 2C).
As such, our single-pulse TMS and rTMS experiments pro-

vided the external manipulation necessary for determining cau-
sality, whereas our DMN-focused fMRI analyses (PPI for single-
pulse; signal amplitude and functional connectivity analyses for
rTMS) measured the effects. Furthermore, on the basis of prior
work, we expected that TMS excitation (single-pulse TMS/fMRI)
and TMS inhibition (1-Hz rTMS) would produce effects in op-
posite directions. In motor cortex, for example, single-pulse TMS
produces activation similar to voluntary engagement of this re-
gion (18), whereas inhibitory rTMS suppresses cortical excit-
ability (e.g., ref. 19)—opposite direction effects, although not
precisely opposite from a mechanistic perspective, given that
single-pulse is an event-related activation tool as opposed to
rTMS, which is meant to induce neuromodulation. Finally, as
a secondary goal, we determined whether excitation or inhibition
of nodes within the CEN or SN could also differentially modu-
late patterns of connectivity and/or signal amplitude within the
CEN and SN.

Results
Two right-sided cortical nodes were selected as targets for TMS
manipulations in this study for (i) constituting part of the CEN
or SN, (ii) location in the prefrontal cortex, and (iii) accessibility
to TMS modulation (Fig. 2D and Fig. S1). Thus, we selected
a CEN node in the posterior middle frontal gyrus (pMFG) and
an SN node in the anterior middle frontal gyrus (aMFG). These
sites were mapped using an independent component analysis
(ICA) on rs-fMRI scans from a separate dataset (n = 38) and
subsequently transformed to individual subject native space for
TMS targeting (Fig. S1). Consistent with prior work (12) and our
TMS targeting approach, ICA based on all rs-fMRI scans from
the experimental group (n = 22; including both pre- and post-

rTMS scans) was used to define the canonical a priori regions of
interest that best represent the three networks (Fig. 2E and
Table S1): the right lateral prefrontal and lateral parietal cortices
in the CEN, the dorsal anterior cingulate cortex (dACC) and the
right fronto-insular complex (FIC) in the SN, and the medial
prefrontal (MPFC) and posterior cingulate cortices (PCC) in the
DMN. By having two active stimulation sites we were able to
control for nonspecific effects of TMS stimulation (20), because
believable sham stimulation is presently difficult to achieve in the
MRI environment.

Excitatory TMS/fMRI. To test our first causality prediction, we de-
livered excitatory single TMS pulses interleaved between acquis-
itions of whole-brain fMRI volumes to either the pMFG (CEN) or
aMFG (SN). PPI analyses served as our neuroimaging read-out of
the effects of single-pulse TMS and allowed us to quantitate TMS-
induced connectivity between the DMN and CEN/SN. Our PPI
“psychological context” was the short blocks during which in-
terleaved TMS pulses were delivered, compared with no-TMS
baseline periods (Methods). Results were analyzed in a 2 × 2 × 4
ANOVA with a two-level TMS stimulation target factor (i.e.,
pMFG and aMFG), a two-level PPI seed region factor (i.e.,
MPFC and PCC for the DMN), and a four-level PPI connectivity
target factor (i.e., lateral prefrontal, lateral parietal, dACC, and
FIC). We focused first on the main effect of TMS stimulation
target, with subsequent dismantling of the ANOVA to identify
specific effects (see also schematic summary in Fig. S2).
The overall 2 × 2 × 4 ANOVA (i.e., including all four CEN/SN

regions as PPI connectivity targets) revealed a significant main
effect of TMS stimulation target (F1,21 = 6.1, P = 0.02), which
was driven by greater induction of negative PPI connectivity
between the DMN and the CEN/SN in response to pMFG
(CEN), compared with aMFG (SN), excitatory single-pulse TMS
(Fig. 3A). In fact, only pMFG stimulation induced negative
DMN connectivity with the CEN/SN [vs. baseline: pMFG t(21) =
−3.4, P = 0.003; aMFG t(21) = −0.4, P = 0.68]. The significant
effect of TMS stimulation target also held when considering
DMN connectivity with only the CEN in a 2 × 2 × 2 ANOVA
(F1,21 = 10.1, P = 0.005; Fig. 3B) and was furthermore significant
in separate 2 × 2 ANOVAs for only DMN/lateral prefrontal PPI
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Fig. 1. Outline of the procedures in this study. The study consisted of two
sessions occurring on separate days.

DMN CEN SN

D 
pMFG
(CEN node) 

E 

aMFG
(SN node) 

primary motor 
cortex (M1)

Regions of Interest 

CEN

DMN DMN
- 

DMN
- 

- Theorized Network 
Interaction Model 

Single-pulse TMS: 
CEN/SN excitation 

1Hz rTMS: 
CEN/SN inhibition 

SN

or 

- 
CEN SN CEN SN

- or 

PREDICTED EFFECTS: A B C 
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connectivity (F1,21 = 8.9, P = 0.007) or only DMN/lateral parietal
PPI connectivity (F1,21 = 4.6, P = 0.045).
When considering the main effect of TMS stimulation target for

PPI connectivity between the DMN and only the SN, on the other
hand, the 2 × 2 × 2 ANOVA for induced negative DMN PPI
connectivity with the whole SN was not significant (F1,21 = 1.2, P >
0.29), although there was a significant interaction between the
TMS stimulation target and PPI connectivity target within the SN
(i.e., dACC vs. FIC; F1,21 = 5.21, P = 0.031). This latter interaction
reflected significant induction of negative connectivity only in the
DMN/dACC PPI in response to pMFG single-pulse TMS in a
2 × 2 ANOVA, which was absent with aMFG single-pulse
TMS (F1,21 = 4.2, P = 0.05; Fig. 3C).
The 2 × 2 × 4 ANOVA also revealed a significant interaction

between TMS stimulation target and DMN PPI seed region
(F1,21 = 4.2, P = 0.05), which was driven by stronger induction of
negative DMN connectivity (with the CEN and SN) for MPFC-
seeded, compared with PCC-seeded, PPI analyses. For the
MPFC DMN PPI seed alone, a 2 × 4 ANOVA examining the
effects of TMS stimulation target and CEN/SN PPI connectivity

target found a significant main effect of TMS stimulation target
(F1,21 = 11.9, P = 0.002; Fig. 3A), whereas a similar analysis for
PCC-seeded PPI connectivity did not (F1,21 = 0.7, P > 0.43).
This effect of TMS stimulation target for the MPFC PPI seed

reflected greater induction of negative MPFC connectivity with
the CEN in response to pMFG single-pulse TMS compared with
aMFG TMS (F1,21 = 13.3, P = 0.002; Fig. 3B). In a similar
fashion, MPFC also had greater negative connectivity with the
dACC component of the SN after pMFG compared with aMFG
stimulation [t(21) = −2.3, P = 0.03; Fig. 3C] but only at trend
level for the entire SN (F1,21 = 3.5, P = 0.074), similar to what
was seen for the combined DMN region analysis above. These
effects are shown voxelwise in Fig. 3D, in which an MPFC-
seeded PPI yields CEN and SN clusters.
These data indicate that (i) a causal inhibitory relationship

exists between the CEN/SN and the DMN and that TMS stim-
ulation of the pMFG node within CEN is sufficient to induce it,
and (ii) that the greatest induction of negative DMN connectivity
was between the MPFC component of the DMN and the lateral
prefrontal, lateral parietal, and dACC regions of the CEN/SN.
Importantly, CEN stimulation results in the expected negative
PPI connectivity pattern, even when examining connectivity be-
tween the CEN’s parietal cortex node and the MPFC (Fig. 3D
and Fig. S3), thus illustrating that we have effectively driven
brain network interactions and not just interactions between the
stimulated brain area and downstream regions.
Finally, we examined within-CEN and within-SN effects of

single-pulse TMS to examine whether excitation of nodes within
the CEN or SN could also differentially modulate within-network
connectivity. We found for the SN a significant effect of TMS
stimulation target, such that aMFG stimulation enhanced within-
SN PPI connectivity more than pMFG stimulation (F1,21 = 5.49,
P = 0.029; Fig. 3E). This effect was driven by induction of pos-
itive within-SN PPI connectivity after aMFG stimulation [t(21) =
3.44, P = 0.002] but not after pMFG stimulation [t(21) = 1.27,
P = 0.22]. By contrast, both stimulation sites induced similarly
positive within-CEN PPI connectivity [t(21) > 4.33, P < 0.001;
Fig. 3F). These data are consistent with prior work showing that
single TMS pulses exert an excitatory effect on their targets (18)
and thus serve as a “positive control.”

Inhibitory rTMS with fMRI. To test our second causality prediction,
we delivered 20-min trains of inhibitory 1-Hz rTMS to either the
pMFG (CEN) or aMFG (SN) stimulation targets. We acquired
resting-state fMRI scans before and after each train of rTMS to
serve as the neuroimaging read-out of the after-effects of rTMS.
We considered two resting-state metrics within the DMN, namely
frequency-related signal amplitude and functional connectivity.
Resting-state signal amplitude in the DMN is greatest in the
0.008- to 0.1-Hz LF range, although shifts to the immediately
higher 0.1- to 0.25-Hz (high frequency, HF) range have been
found for subjects in whom the DMN has become dysregulated
(21). We therefore examined both LF (Fig. 4 A and B) and HF
(Fig. 4 C and D) signal amplitude in the DMN as a function of
inhibitory 1-Hz rTMS to the pMFG or aMFG.
With respect to signal amplitude, a 2 × 3 ANOVA with a two-

level DMN region factor and three-level session factor (baseline,
post-pMFG 1-Hz rTMS, post-aMFG 1-Hz rTMS) revealed
a significant main effect of session (F2,20 = 7.57, P = 0.004). This
reflected both a reduction of LF signal amplitude in the DMN
after rTMS to either TMS node (Fig. 4A) and a significantly
greater reduction in DMN LF signal amplitude after pMFG
rTMS than after aMFG rTMS (F1,21 = 7.02, P = 0.015). There
was also a significant main effect of DMN region (F1,21 = 4.88,
P = 0.038). This was driven by a significant main effect of session
for the MPFC (F2,20 = 8.6, P = 0.002; Fig. 4A) but no effect of
session for the PCC (F2,20 = 1.46, P = 0.26). Within the MPFC,
we observed a decrease in LF signal amplitude after rTMS to
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either TMS target, as well as a greater decrease in MPFC LF
signal amplitude after pMFG rTMS than after aMFG rTMS
(F1,21 = 9.46, P = 0.006). Fig. 4B illustrates these results at the
voxelwise level.
As observed in other contexts (21), the reduction of DMN LF

signal amplitude by pMFG rTMS was accompanied by a specific
increase in DMN HF signal amplitude, consistent with disinhi-
bition of the DMN (Fig. 4C). We observed a significant main
effect of session for HF signal amplitude (F2,20 = 5.51, P =
0.012), which was driven by higher DMN HF signal amplitude
after pMFG rTMS than either after aMFG rTMS (F1,21 = 4.9,
P = 0.038) or at the pre-rTMS baseline (F1,21 = 10.59, P = 0.004).
Similarly, there was a main effect of DMN region (F1,21 = 38.34,
P < 0.001). This was driven by a significant main effect of session
for the MPFC (F2,20 = 6.08, P = 0.009; Fig. 4C) and not for the
PCC (F2,20 = 1.36, P = 0.28). Within the MPFC, we observed
greater increases in HF signal amplitude after pMFG rTMS than
either after aMFG rTMS (F1,21 = 9.33, P = 0.006) or at the pre-
rTMS baseline (F1,21 = 10.99, P = 0.003). Fig. 4D qualitatively
illustrates these a priori region of interest results at the voxelwise
level. Outside of the DMN, rTMS to either the pMFG or aMFG
similarly reduced LF signal amplitude in the SN and increased its
HF signal amplitude (Fig. S4).
With respect to resting-state functional connectivity, we ob-

served a significant main effect of session on LF range intra-
DMN resting connectivity (F2,20 = 4.57, P = 0.023), such that
intra-DMN resting connectivity was reduced after rTMS to either
the pMFG or aMFG (Fig. S5). However, there was no difference
in intra-DMN connectivity after pMFG compared with after
aMFG rTMS (F1,21 = 0.18, P = 0.67). Together, these data sug-
gest that there may be greater redundancy in determining con-
nectivity patterns than amplitude of regional resting-state signal,
such that inhibition of a single network node is enough to perturb
regional signal amplitude but not connectivity. In summary, this
loss-of-function experiment with inhibitory rTMS shows that
endogenous CEN activity, as modulated through its pMFG

node, is necessary for regulating the typical LF pattern of DMN
signal, in particular for the MPFC, without which the DMN’s
activity becomes disinhibited, shifting its signal from lower to
higher frequency.

Stimulation Locations Relative to Motor Cortex. Finally, we explored
the relationship between our connectivity-guided TMS stimulation
targets and the current standard clinical procedure for targeting of
rTMS for depression [i.e., “the 5- or 6-cm rule”; (22–26)]. At
present, this is the only US Food and Drug Administration-
approved brain rTMS-based treatment for any clinical indication
and involves stimulation aimed at the dorsolateral prefrontal
cortex, at a site 5–6 cm anterior to the primary motor cortex
(M1). We therefore mapped M1 in our subjects, guided by the
hand knob landmark (27) and confirmed by evoking motor
responses from the contralateral abductor pollicis brevis muscle,
and compared the distance from M1 to the pMFG and aMFG
stimulation sites in each subject. There were two distinct clusters
corresponding to the pMFG and aMFG stimulation targets,
which were 3.4 ± 0.1 cm apart (Fig. 2D). The mean distance from
M1 to the pMFG site was 5.4 ± 0.2 cm and fromM1 to the aMFG
site was 8.4 ± 0.2 cm. There is therefore a remarkably close
parallel between the 5- or 6-cm rule that has been adopted clin-
ically and our connectivity-guided pMFG target in the CEN.

Discussion
Here we directly tested a long-standing assumption based on
correlations, that the CEN and SN exert control over the DMN,
a notion that has been theorized but never proven in terms of
causality (9, 10, 12, 28, 29). In so doing, our TMS/fMRI findings
demonstrate a directional causal relationship by which a dorso-
lateral prefrontal node situated within the CEN inhibits CEN
interactions primarily with the MPFC portion of the DMN.
Connectivity analyses typically find similar CEN/SN connectivity
relationships for both PCC and MPFC (2, 9) (although also see
ref. 30) and cannot definitively discriminate as to their causal
origin. It is only through external manipulation of brain activity,
accomplished here by single-pulse excitatory TMS and inhibitory
rTMS, that specific causal pathways in the brain can be identified.
Moreover, although we cannot rule out that an as-yet-unidentified
third region mediates the effect of dorsolateral prefrontal on the
MPFC, our results indicate a causal chain between manipulation
of the dorsolateral prefrontal cortex and effects on the MPFC.
This is further supported by evidence of a monosynaptic projection
between these structures (31).
It is also noteworthy that resting DMN activity was altered after

inhibitory rTMS to a regulatory node in the CEN. Thus, even in the
absence of CEN engagement by a task, activity in the CEN is im-
portant for maintaining the typical LF pattern of DMN signal.
Indeed, the CEN is active even when subjects are at rest (32) and
when active would presumably lead to transient inhibition of DMN
activity. The specific ways in which the CEN and DMN interact
under physiological conditions, however, is not yet fully clear. Fi-
nally, alterations in the resting-state relationship between the CEN/
SN and DMN are seen in particular behavioral states in the same
individual, as well as differ between healthy individuals and those
with psychopathology. Hence, the resting-state relationship be-
tween the CEN/SN and DMN is modifiable (in our case by rTMS)
(6, 33). One caveat is that we did not find an effect on the CEN of
dorsolateral prefrontal rTMS, and thus interpret the inhibitory
effect of 1-Hz rTMS on the basis of extensive prior data (34). In-
terestingly, the effects on downstream targets (DMN) but not
within-network targets in the CEN are also consistent with our
recently completed study of depression treatment with rTMS (10
Hz) to the left dorsolateral prefrontal cortex, in which we found
changes after treatment in the DMN but not within the CEN.
During attention-demanding tasks, activation is frequently

observed in the human CEN and SN using either functional
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Fig. 4. Disinhibition of endogenous DMN activity after 1-Hz rTMS to the
pMFG (CEN node), as reflected by (A) a shift of DMN signal, primarily in the
MPFC (B), from lower frequencies (0.008–0.1 Hz) to (C and D) higher fre-
quencies (0.1–0.25 Hz), plotted for the DMN (MPFC and PCC) or MPFC alone.
The illustrative voxelwise maps show the difference in LF (B) or HF (D) signal
amplitude for the difference between resting-state scans after 1-Hz pMFG
rTMS compared with after 1-Hz aMFG rTMS (P < 0.005, uncorrected).
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neuroimaging or intracranial electrophysiological measures,
whereas deactivation is observed within the DMN (28, 35).
Similar effects have been observed in both cats and monkeys
(36, 37). As such, dynamic opposition between activation of
the CEN/SN and deactivation of the DMN has been theorized
to mediate transitions between rest and task-engaged states
(2, 4, 6, 7, 9, 10). Disruptions in this dynamic opposition be-
tween networks have been linked to attentional lapses and
suboptimal performance in healthy subjects (38–41). Thus,
because the CEN has been proposed to play a preferential
role in trial-to-trial adaptive control (5), such adaptation may
involve balancing internally oriented DMN activity and ex-
ternally oriented task-related CEN/SN activity (6). These
hypotheses with regard to consequences of pMFG (i.e., CEN)
excitatory or inhibitory rTMS on task-related processing can
be tested directly in future work examining the effects of HF
and LF rTMS on task performance and activation.
Although we do not rule out the possibility that other SN sites

may regulate the DMN (12), we provided strong evidence that
stimulating the most TMS-accessible SN node (aMFG) increased
within-SN PPI connectivity, while still leaving SN/DMN PPI
connectivity unaffected. It will be important to extend this study
by investigating other targets [e.g., right FIC (12)], left-sided
network nodes, contrast the effects of inhibitory LF and ex-
citatory HF rTMS, as well as stimulate the MPFC component
of the DMN directly and examine effects on the CEN/SN (although
deeper sites are difficult to reach with conventional TMS coils).
Additionally, it would be of interest to apply mathematical model-
ing methods previously used to examine network relationships (12)
to our post-rTMS resting-state data. One notable limitation of our
study that could be remedied in future work is the lack of a sham
rTMS condition. Presence of a sham condition would have allowed
us to interpret effects common to pMFG and aMFG rTMS (e.g.,
Figs. S4 and S5) but was not feasible in the context of the present
study. Nonetheless, having two distinct active targets for TMS in this
study allowed one to serve as a control for the other.
Identification of a node in the CEN that regulates the DMN also

carries clinical implications. The DMN shows various abnormalities
in a range of neuropsychiatric disorders, including depression,
posttraumatic stress disorder, schizophrenia, Alzheimer’s dis-
ease, and autism (13, 14, 33, 42). We also note in particular that
the MPFC, which is one key part of the DMN, has been pos-
tulated to be critical for the antidepressant effects of medi-
cations and rTMS (43, 44). The clinical efficacy of rTMS, however,
remains fairly limited, owing to a poor mechanistic understanding of
the effects of rTMS and suboptimal targeting of stimulation, which
currently makes minimal explicit reference to patients’ structural or
functional neuroanatomy (44, 45). It is therefore intriguing that the
MPFC-regulating CEN node (pMFG) was located 5–6 cm anterior
of primary motor cortex, consistent with current methods for lo-
calizing the clinical rTMS stimulation site (25, 26). Thus, because
connectivity-guided modulation of this node selectively regulates
the MPFC/DMN, our results may serve as a unique platform for
circuit-driven interventions in humans, including for depression.

Methods
Subjects. The TMS/fMRI study included 24 healthy subjects (age 26.5 ± 0.9 y,
14 males). Two participants were excluded from the TMS/fMRI data analysis
because they failed to complete the study. Scan parameters and pre-
processing are described in SI Methods.

TMS Targeting. TMS targets were identified using a frameless stereotactic neu-
ronavigation system (Brainsight2; Rogue Research) on rs-fMRI ICA maps (http://
www.fmrib.ox.ac.uk/fsl/melodic/index.html) from a separate cohort of 38 healthy
subjects (Fig. S1). Stimulation spots were marked on a Lycra swim cap (Speedo
USA) worn by the subject inside the scanner (45), consistent with prior TMS/
fMRI studies (18). TMS was delivered by a MagStim 70-mm figure-eight
MR-compatible coil inside the MRI machine, held in place with a custom-
built MRI coil holder, and controlled by a MagStim Rapid2 stimulator

located outside the scanner room and connected to the coil through the
penetration panel. Noise in the functional images otherwise induced by
the MagStim system was eliminated through custom implementation of
radio frequency filters at the penetration panel. The TMS coil was reposi-
tioned for each stimulation site by sliding the subject out of the scanner bore,
adjusting the coil holder position, returning the subject into the scanner bore,
and retaking anatomic calibration scans. Stimulation intensity was indi-
vidually determined and delivered at 120% of each subject’s resting motor
threshold. We also recorded subjective discomfort ratings at baseline, as well
as immediately after each experimental TMS manipulation (Subjective Units
of Distress Scale).

Interleaved Single-Pulse TMS/fMRI.At each stimulation site, 70 TMS pulses were
delivered over 5min (147 volumes) in aminiblock designwith 7 pulses per block
and 10 blocks per run. Pulses were delivered between functional volumes to
avoid corruption of blood oxygen level-dependent signal (17), resulting in
a stimulation frequency of 0.4 Hz during each 16.8-s “TMS on” period (which
were separated from each other by 16.8-s “TMS off” no-stimulation periods).
Prior work has not found effects of single-pulse TMS delivered in this way on
cortical excitability when stimulation is slower than 0.9 Hz (19), and has found
that a single-pulse interleaved TMS/fMRI protocol similar to ours does not in-
duce lasting plasticity that would affect subsequent scans (46).

rTMS and Resting-State Scans. In session 1 we collected one 8-min (240 vol-
umes) eyes-open resting-state fMRI scan, and in session 2 we collected three
8-min scans, one before any rTMS, and two that immediately followed rTMS
to the CEN or SN nodes. For each stimulation site, a 20-min train of 1-Hz
rTMS (1,200 pulses) was delivered while subjects were inside the scanner.
rTMS epochs were separated by 35–40 min to ensure signal/physiological
recovery. Low frequency (∼1 Hz) rTMS, when applied over motor cortex or
visual cortex, leads to suppressed local cortical excitability that lasts for ap-
proximately the same duration as the rTMS after the end of stimulation, as
indexed by decreased motor-evoked potentials (47), increased phosphene
threshold (48), or on EEG measures of cortical excitability (34). Finally, the
order of sites receiving 1-Hz rTMS was counterbalanced across subjects.

Network Definition for Analyses. A priori network regions of interest (ROIs)
consistent with the specific nature of our hypotheses were defined by ICA across
the experimental group, including both pre- and post-rTMS scans. Following prior
work (12), two key regions were identified for each of the networks. As shown in
Fig. 2E and Table S1, the resulting six ROIs included the ∼1,000 highest func-
tionally connected voxels (∼8,000 mm3) and encompassed the DMN (MPFC,
PCC), CEN (right-sided lateral prefrontal, lateral parietal cortices), and SN
(dACC, right FIC). We focused on ROI-based extractions from the right
hemisphere because (i ) the CEN in particular is highly lateralized (e.g.,
ICA map in Fig. S1A), and (ii ) network dynamics between the DMN, CEN,
and SN have been shown to be more robust in the right hemisphere (12).

Analysis of Concurrent TMS/fMRI Data. To examine the effects of single-pulse
TMS on network interactions, we used PPI [SPM8 (http://www.fil.ion.ucl.ac.
uk/spm)], which tests whether interregional correlations (“functional con-
nectivity”) change as a function of the intermittent TMS stimulations, while
accounting for mean activity changes due to the main effect of stimulation
(49). Briefly, to create the PPI interaction term of interest, signal in a seed
ROI is deconvolved (50), multiplied with a vector coding for when TMS stim-
ulation occurred, then reconvolved with the hemodynamic response function,
and finally entered into a model containing the seed ROI time series and TMS
stimulation vector. Thus, our “psychological term” in the PPI was the “TMS on”
periods, which correspond to when short blocks of interleaved single TMS
pulses were delivered, separated by baseline (“TMS off”) no-stimulation
periods. This approach is consistent with our own previous publications using
PPI (51) and the use of “generalized PPI” methods (52).

Analysis of Resting-State Data—Signal Amplitude. We used a fractional am-
plitude of LF fluctuations analysis (fALFF; http://www.restfmri.net/) (53),
which measures the amplitude of regional signal in a frequency range rel-
ative to the signal from the whole detectable frequency spectrum. rs-fMRI
data were transformed into the frequency domain with a Fast Fourier
transform and then square-rooted to obtain the amplitude. fALFF was
calculated as the sum of amplitudes across the ranges of 0.008–0.1 Hz (LF) (54)
or 0.1–0.25 Hz (HF), divided by the signal across the entire frequency range,
and standardized by z transformation, which improves statistical analyses
and test–retest reliability (55).
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Analysis of Resting-State Data—Connectivity. Band-pass filtered resting-state
data were analyzed for connectivity between regions by performing corre-
lations between the time courses of each pair of regions within a network.
These r values were then z-transformed for statistical analyses.

Statistical Analyses. All statistical analyses were conducted using SPSS 18. The
specifics of each ANOVA and t test performed are detailed in Results. All
error bars represent SEM.
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